食品工場における 衛生管理の仕組みづくりと実務

衛生・洗浄作業の結果の「評価」と「検証」を考える

第14回

SOCSマネジメントシステムズ株式会社 代表取締役 田中 晃

1. 衛生・洗浄作業の「検証」

前回は、食品衛生における衛生・洗浄の「結果」の「評価」について考えましたが、今回は衛生・洗浄システムの「有効性」の「検証」に関して考えます。

衛生・洗浄作業の結果をどのように「評価」するか¹ —「評価」の目的は、毎日実施した衛生・洗浄作業が、「標準作業手順書」で定められた作業方法と手順を遵守し、その結果として、予め設定された「目標(=清浄度)」を達成していることを確認すること(=「適合性(決められた通りに行われているか?)」の確認)。また、もし設定された目標値を達成できていない場合、それを修正する行動を行い、目標を達成させる一連のプロセスです。

これに対して、「検証」とは、「FSMS(=食品安全マネジメントシステム)」で設定された作業 手順と範囲、周期を計画通り実行することで、目標とする衛生的な環境(=清浄度)が達成できることを検証するものです。視点を変えると、これは「FSMS」の有効性を確認する作業であり、万一、目標とする衛生的な環境が達成できていない場合、運用と実行の改善計画を作成し、必要な行動をとること。システムの是正が必要な場合には FSMS の変更を行う一連のプロセスです。

食品製造施設における衛生・洗浄システムの「検

証」には、以下の2つの方法があります。1つは「定期的インスペクション」で、対象項目と評価基準を設定し、その達成度を目視検査を中心に評価(対象によってはATP検査などを併用) ¹¹するものです。

もう1つの方法は、微生物の拭き取り検査を中心とした「環境モニタリング」です。食品工場内・外の環境は常に変化しており、それに伴い危害要因も変化する可能性があります。

新製品の追加、機械設備の新設や変更、製造工程の変更、原材料の変更、建物や設備の経年劣化、アルバイトや派遣スタッフの増加、気候や外部環境の変化など、様々な要因が工場内の衛生環境に直接的、もしくは間接的な影響を与え、その結果、危害要因も変化する可能性が生まれます。

こうした工場内衛生環境の変化を定期的に確認 し、危害要因の変化などを発見した場合には、予 防的な対策を講じるための"トリガー"となるこ とが環境モニタリングの目的です。

2. 「定期インスペクション」の計画と実施

弊社では、毎日の作業終了時の「効果測定(=結果の確認・評価)」と併せて、毎月1回、社内資格を持ったインスペクター による「定期インスペクション」を実施し、この2種類のインプットに基づいて、日常的な衛生・洗浄作業の実施状

図1 定期インスペクションの評価表(例)

況と、衛生環境を立体的に評価するシステムを とっています。

図1は、弊社で実施したある工場の定期インスペクション評価表の一部です。この評価表では、対象の項目ごとに、具体的に確認が必要な場所と状態が指示され、それぞれ「G(Good)」「F+(Fair+)」「F-(Fair-)」「P(Poor)」の4段階で評価する仕組みになっています(評価の具体的な方法と基準の作成方法に関しては前月号『衛生・洗浄作業の結果「評価」と「検証」を考える(1)』を参照ください)。

評価方法として、弊社システムが「4段階」評価を採用している理由は、一般的によく見かける「3段階」や「5段階」評価では、"中心化傾向"が働き、「まあまあ」や「普通」などの評価が増

える傾向がありますが、これでは状況を正確に評価することができません。そのため、結果的に、判断のために必要な正確で十分な情報を得ることができず、場合によっては誤った判断を行うことになりかねません。

これに対して、4 段階評価では、(イメージ的には)「G」は「 \bigcirc 」、「F+」は「 \bigcirc 」で、この2つは基準を「達成」。逆に「F-」は「 \times 」、「P」は「 \times ×」で、この2つは基準を「未達成」と、評価結果の"白黒"を明確にすることができます。

弊社システムのもう1つの特徴は、図2にある「是正・修正項目のトラッキング」です。図1の項目ごとの評価と別に、特に早急な改善もしくは是正が必要と判断された項目は、①インスペクターが写真を添えて、具体的に問題箇所を指摘し、

図2 定期インスペクションにおける「是正」項目のトラッキング(例)

修正もしくは是正を指示します(左側「修正項目」欄)。②この指示を受けると、現場運営責任者は 実施計画を作成し予定期日を記入します(中央「計画」欄)。③現場運営責任者は、対策を実施した 結果を、写真を添えて報告します(右側「実施結果」欄)。

弊社内の運用ルールでは、定期インスペクションにより修正もしくは是正指示を受けた場合、現場の運営責任者は1ヶ月以内に対策を実施し、結果を報告することが義務付けられています。このように、改善や是正が必要な問題箇所と、その対策実施記録を統一的なデータとして残すことで、問題箇所の"指摘しっぱなし"や"放置"を防止し、今後のシステム改善のための貴重なデータとして蓄積することが可能になります。

食品工場の衛生・洗浄作業では、時間的な制約(多くの場合、これに加えてコスト的な制約)により、工場内全体を、隅から隅まで、毎日完全に"ピカピカ"にしようとすることは現実的ではありません。限られた時間と労力の制約の中で、最も効果的に食品安全リスクを最小化するためには、リスク評価による優先順位に基準にして、食品接触面(ZONE 1)とその隣接範囲(ZONE 2)(図 3)を中心とした範囲に、現実的には毎日の作業を集中せざるを得ません。

その結果、毎日の衛生・洗浄作業の対象に含まれる範囲は、毎日作業が行われ、かつその結果を効果測定することで、一定程度の衛生状態を維持することは可能です。しかし、その範囲に含まれない範囲(ZONE 2 の一部や ZONE 3)は、往々

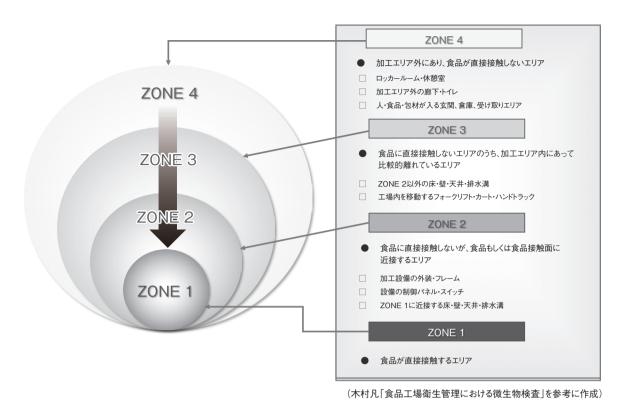


図3 環境モニタリングにおけるゾーン区分

写真1 環境管理が不十分な結果の例① が拡大している

環境管理が不十分な結果の例② 架台裏側にカビと油汚れの堆積 天井面や天井配管に広範囲にカビ汚染が拡大している

環境管理が不十分な結果の例③ スイッチ部はきれいだが、パイプ部 は全体がカビで汚染されている

にして、"気が付いたらやる"状態になり、これ が長期間継続すると、衛生の「死角」ivを発生さ せる原因となります(写真1、2、3)。

定期インスペクションシステムが FSMS の中 で持つ重要な役割は、定期的に場内の隅々(毎日 の衛生作業の範囲外も含めて) まで点検し、こう

した"忘れがちな場所"や"目の届きにくい場所"を 作らないこと。気付かないうちに衛生環境が悪化 しているような場所を作らせないことで、工場内 "全体"の衛生環境を、FSMSで設定された清浄 度に維持・管理させることにあります。

3. 「環境モニタリング」による FSMS の有効性の検証

環境モニタリングとは「環境に起因する最終製 品の交差汚染を予防することを目的とした、食品 製造施設を監視するための規定プログラム。…… 環境モニタリングプログラムは、より広義な解釈 では、ATPや衛生指標菌から、病原菌、腐敗菌、 アレルゲンに至るまで様々な検査が含まれる | v と定義されます。このプログラムでは、衛生指標 菌の検査、食中毒菌の検査、ATP検査を組み合 わせて実施することで、衛生・洗浄作業の結果の 検証を含む FSMS 全体の有効性を「検証」する ことができます。

FSMS の中で、環境モニタリングは2通りに活 用することが可能です。1つは、具体的な問題(製 品の品質不良など)が発生した場合、その原因究 明と改善対策の立案・実行、及びそれらの効果測 定に有効な手法です。もう1つは、洗浄作業を中 心とした衛生プログラムの有効性確認と検証の効 果的な方法となることですvi。

このことは、視点を変えると、具体的に顕在化 した問題がない場合でも、定期的に環境モニタリ ングを実施することで、今まで見えなかった"危 険"の発見(リステリア・モノサイトゲネスなど) と"見える化"が可能となるだけでなく、継続的 に実施することで、その時々に起こるかもしれな い衛生環境の変化やリスク要因の変化を早期発見 し、予防的なコントロールにつなげることが可能 となることですい。

食品製造現場の衛生管理は、従来、多くの場合 「食品接触面」の「衛生指標菌」vi を衛生環境評 価の"インジケーター"として用いて来ました。

一般生菌数や大腸菌群を検査することは、工場 の一般衛生管理では大変重要です。しかし、近年 の研究報告を見ると、「☑指標菌の数値が基準を 超えていても、病原菌が存在しない場合がある ☑指標菌が基準内であっても、病原菌が含まれて いることがある」ことが明らかになり、このこと から「指標菌によって食品の安全性を保証するこ とには根本的な限界がある」vii と考えられるよう

になりました。

つまり、指標菌 (一般生菌数、大腸菌群など) は、製造環境の清潔さを間接的に反映する指標で はあっても、病原菌の存在を直接的に示すもので はなく、このことが、「指標菌 | + 「病原菌(リ ステリア、サルモネラなど) | を対象とした定期 的な環境モニタリングが、食品の安全性を担保す るために非常に有効であることの根拠です。

環境モニタリングの重要性は、従来よりも菌相 や菌数が正確に把握することができること(そ のことは非常に重要ですが)以上に、このシス テムを自社の FSMS のマネジメントサイクル (=PDCA サイクルマネジメント)の中に組み込 むことで、FMSM の有効性を定期的に「検証 | することができること。また、モニタリングデー タの蓄積により、衛生環境に変化の兆候があった 場合、予防的な対策を講じることが可能になるこ とにあります。

前述の通り、食品の製造・販売を取り巻く環境・ 要因は複雑で、かつ刻々と変化します。常に新し い危害要因が発生したり、危害要因の重要度が変 化する可能性がある、いわば「動」的な環境です。

この「動」的な食品製造現場で、衛生環境の状 況を的確に分析・評価し、効果的な予防的措置を 実行するためには、3つの「センサー」によるイ ンプットを、個別の情報としてではなく、「有機的」 かつ「立体的」に機能させ、問題の「構造」を明 らかにする「統合的」な視点が必要です。

第一は「ATP と訓練されたスタッフによる五 感評価を組み合わせた日常的な効果測定」、第二 は「科学的根拠と評価基準に基づく定期的インス ペクション」、第三は「定期的な環境モニタリン グ」。この3つの「センサー」を効果的に機能させ、 そこから得られる情報を自社の FSMS に反映さ せ、常にシステムの有効性を担保することで、環 境モニタリングを非常に有効な情報ツールとして 機能させることができます。

ある先行研究では、「微生物汚染度は一様では なく偏在している…… ①全体の 20% 程度は、ほ とんど微生物が居ない。②全体の40%近くは、

cfu が $1 \sim 5$ という微生物汚染の低い場所である。 ③全体の 2% 強の部分は、微生物汚染度が非常に高い」 $^{\text{vii}}$ との研究結果が示されています。もちろん、環境の諸条件(対象表面の湿潤度など)により、ここで示されている汚染度分布の比率は異なる可能性があります。

しかし、「微生物汚染度は一様ではない」との 指摘には、非常に重要な意味があります。このこ とは、広い工場内で、たった数カ所(せいぜい十 数箇所程度)の ATP 検査や一般生菌数の検査結 果だけで、工場内環境の清浄度を評価することの 危険性を示しています。

食品製造施設の衛生的な環境を作り、維持するためには、効果的な衛生・洗浄システム(SSOPの作成、効果的な教育・訓練の継続的実施)の作成と計画的な運用、そして定期的な結果の「評価」とシステムの有効性の「検証」が必要です。

インスペクションや検査は、あくまでも「結果」を評価することしかできません。言い方を変えると、どんなに厳密な検査をしても、それだけでは「結果」を改善したり、影響を与えることはできません。

まずは、必要とされる「結果」を安定して実現することを可能にする「仕組み」を作り、次に、これを適切に運用・管理すること。そして、3つの「センサー」を機能させることで、このシステム全体の効果的運用と有効性を「評価」、「検証」すること。この組合せにより、初めて食品製造に必要な衛生的な環境を達成・維持することが可能

- と **慰 視 検査**の方法については、拙稿『衛生・洗浄 作業の結果「評価」と「検証」を考える』(月刊 HACCP 誌 25 年 7 月号)を参照。
- ii インスペクション結果の客観性を担保するためには、インスペクターは評価対象となる現場と利害関係のないことが必要。従って、当該現場の担当者やエリアマネジャーなどの利害関係者が実施した場合、バイアスがかかり正当な評価とならない可能性が高い。これを防止するため、弊社では、社内資格の1つとして「QC (クオリティーコントローラー)」の認証制度を設け、インスペクターにはこの資格取得者を任命している。
- iii 拙稿『食品製造環境の危害要因 = 「衛生の死角」 をなくす管理方法』(月刊 HACCP 誌 25 年 2 月号、 3 月号)を参照。
- iv「食品事業者向け環境モニタリングハンドブックー 初版」、スリーエムジャパン株式会社フードセーフ ティー製品事業部
- v 「環境モニタリング」の実際例については、拙稿『環境モニタリングに基づくサニテーションの実施と 洗浄・殺菌方法の検証方法』(月刊 HACCP 誌 24 年 6 月号)を参照。
- vi 食品や製造環境の衛生状態を評価するために用いられる微生物の指標で、汚染の有無や処理工程の適切性を推測するための重要な指標となる。一般生菌数、大腸菌群、大腸菌、黄色ブドウ球菌(弁当・惣菜製造の場合)などが代表的。
- vii 木村凡『なぜ EU では指標菌を安全基準から 外したのか? 日本の微生物規格との違いを解 説 』(https://foodmicrob.com/why-eu-removedindicator-bacteria-from-food-safety-criteria/)
- viii 米虫節夫『諸環境空間における微生物制御システムの構築と応用に関する研究』、日本防菌防黴学会、 「防菌防黴」Vol38,No6

1/4 AD